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Abstract
We consider the six-vertex model with domain wall boundary conditions.
We choose the inhomogeneities as solutions of the Bethe Ansatz equations.
These equations have many solutions, so we can consider a wide variety of
inhomogeneities. For certain choices of the inhomogeneities we study arrow
correlation functions on the horizontal line going through the centre. In
particular, we obtain a multiple integral representation for the emptiness
formation probability that generalizes the known formulae forXXZ
antiferromagnets.

PACS numbers: 05.50.+q, 05.20.−y, 05.70.−a, 75.50.Ee, 75.60.Ch

1. Introduction

The six-vertex model was first introduced in [1]. It was solved exactly by Lieb [2] and
Sutherland [3] in 1967 by means of a Bethe Ansatz for periodic boundary conditions. Later
the six-vertex model was also studied in the presence of several other boundary conditions
[4–6]. Domain wall boundary conditions were introduced in 1982 [7]. These boundary
conditions are interesting because they allow for the derivation of determinant representations
for correlation functions [8]. It was realized recently that the six-vertex model in the presence of
such boundary conditions is extremely helpful in the enumeration of alternating sign matrices
[9, 10]. The bulk free energy for these boundary conditions was calculated in [11].

In this paper we show that for special choices of inhomogeneities, one can compute
the free energy and some correlation functions of the system with domain wall boundaries.
This observation might be useful because we expect some properties of the model to be
independent of the inhomogeneities, i.e. to depend only on the anisotropy parameter. In
the simplest situation, the correlation functions coincide with those for periodic boundary
conditions. We will continue the line of research of [12] and will primarily be interested in the

0305-4470/01/398135+10$30.00 © 2001 IOP Publishing Ltd Printed in the UK 8135

http://stacks.iop.org/ja/34/8135


8136 J de Gier and V Korepin

emptiness formation probability (EFP) which was first introduced in [13]. In the latter paper
a multiple integral expression for the EFP was obtained for the first time for the ground state
of theXXX antiferromagnet. Here we will consider the EFP for more general Bethe states and
will generalize the multiple integral expression of these cases.

2. Quantum inverse scattering

We consider the inhomogeneous six-vertex model with domain wall boundary conditions. It
is defined as the six-vertex model on aM × M square lattice with fixed boundary conditions:
arrows on the horizontal (vertical) edges are outgoing (ingoing). Furthermore, spectral
parametersλi and µk are attached to linei and columnk. We choose the following
parameterization of the usual Boltzmann weightsa, b andc:

a(λ) = 1

b(λ) = sinh(λ− η/2)

sinh(λ + η/2)
(1)

c(λ) = sinhη

sinh(λ + η/2)
.

We want to make use of the formalism of the algebraic Bethe Ansatz. For this purpose the
Boltzmann weights are collected in a matrixL,

L(λ) =




1 0 0 0
0 b(λ) c(λ) 0
0 c(λ) b(λ) 0
0 0 0 1


 . (2)

The monodromy matrix is then defined as an ordered product of theL-operators,

T (λ; {µk}) = L(λ− µM) . . . L(λ− µ2)L(λ− µ1) (3)

whereL(λ−µk) acts on thekth factor of the physical spaceC2M , and the auxiliary spaceC2.
For clarity, we will in the following often suppress the explicit dependence ofT on {µk}. As
an operator on the two-dimensional auxiliary space,T (λ) can be written as

T (λ) =
(

A(λ) B(λ)
C(λ) D(λ)

)
(4)

whereA, B, C, D are operators on the physical spaceC
2M . The trace of the monodromy

operator,

T(λ) = A(λ) + D(λ) (5)

is the usual transfer matrix corresponding to the model with periodic boundary conditions.
Because of the parameterization (1), the monodromy matrixT (λ) satisfies the following
intertwining relation:

Ř(λ− µ) [T(λ)⊗ T(µ)] = [T(λ)⊗ T(µ)] Ř(λ− µ). (6)

The R-matrixŘ is defined by

Ř(λ) = PL(λ + η/2) (7)

whereP is the permutation operator on the spaceC
2 ⊗ C

2. Equation (6) embodies several
commutation relations between the operatorsA, B, C andD defined in (4).
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The fixed boundary conditions imply the following formal expression for the partition
function [7]:

ZM({λi}, {µk}) = 〈↓|B(λ1; {µk}) . . .B(λM ; {µk})|↑〉 (8)

where|↑〉(|↓〉) is the state with all spins up (down). In this paper we shall be interested only
in the case whereM is even and the{λi} are chosen as{λi}Mi=N+1 = {λi}Ni=1 for i = 1, . . . , N ,
whereN = M/2. This allows us to rewrite the partition function in a convenient way [12].
First define the states

|N〉 = B(λ1) . . .B(λN)|↑〉 〈N | = 〈↑|C(λ1) . . .C(λN). (9)

Let R = ∏M
k=1 σ

x
k be the flip operator on the physical space that flips all arrows. We then find

that

ZM({λi}, {µk}) = 〈N |R|N〉. (10)

Formal expressions for correlation functions can also be written concisely in this notation.
For example, the probability that all arrows located at the columnsk1, . . . , kn and between the
linesN andN + 1 are down is given by

〈
πk1 . . . πkn

〉 =
〈
N |Rπk1 . . . πkn |N

〉
〈N |R|N〉 (11)

whereπk = 1
2(1−σzk ). Averages like (11) can be calculated using the solution of the quantum

inverse scattering problem for the operatorsπk [14, 15],

πk =
k−1∏
l=1

T(µl + η/2)D(µk + η/2)
M∏

l=k+1

T(µl + η/2). (12)

From this expression it is clear that the correlation function (11) simplifies when theki are
nearest neighbours.

3. Bethe Ansatz

A marvellous aspect of formulae (11) and (12) is that the set of inhomogeneities can be chosen
such that the state|N〉 is an eigenstate ofT. In fact, there are many choices possible that have
this property. In this section we will derive explicit expression for the correlation function (11)
corresponding to such choices. We will closely follow a similar derivation given in [16] for
one particular choice of the inhomogeneities, namely those corresponding to the ground state
of the antiferromagneticXXZ quantum spin chain. To begin, we fix the set of inhomogeneities
{λi} to be a solution of the Bethe Ansatz equations,

a(λj )

d(λj )

N∏
k=1
k =j

b(λj − λk + η/2)

b(λk − λj + η/2)
= 1 1 � j � N (13)

wherea (λ) = 1 andd(λ) = ∏M
k=1 b(λ− µk) are the eigenvalues of operatorsA(λ) andD(λ)

respectively on the reference state|↑〉. Note that these equations imply that
∏N

j=1 d(λj ) = 1.
It will be useful to rewrite the Bethe Ansatz equations in their logarithmic form,

ϕ(λj ) = π (mod 2π) 1 � j � N (14)
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where the functionϕ is defined by

ϕ(λ) = − i ln
a(λ)

d(λ)
− i

N∑
k=1

ln
b(λ− λk + η/2)

b(λk − λ + η/2)

= i ln
d(λ)

a(λ)
+ i

N∑
k=1

ln

(
−sinh(η + λ− λk)

sinh(η − λ + λk)

)
. (15)

If the {λi} are a solution of the Bethe Ansatz equations, the state|N〉 is a common eigenstate
of R with eigenvalue±1 and ofT(λ) with eigenvaluet (λ) given by

t (λ) = a(λ)

N∏
i=1

b−1(λi − λ + η/2) + d(λ)
N∏
i=1

b−1(λ− λi + η/2)

= a(λ)
(
1 + e−iϕ(λ)

) N∏
i=1

b−1(λi − λ + η/2). (16)

If {λi} obey the Bethe Ansatz equations (13) and{ξj } are a set of parameters, then the following
holds [16, 17]:

〈↑|
N∏
j=1

C(ξj )
N∏
i=1

B(λj )|↑〉 = dett ′

detV
(17)

where

t ′ij = ∂t (ξi)

∂λj
Vij = 1

sinh(ξi − λj )
. (18)

A useful formula that we will use in the following is

detV
N∏

k,l=1

sinh(ξk − λl) =
N∏

k,l=1
k<l

sinh(λk − λl) sinh(ξl − ξk). (19)

From (10) it follows that the partition sum is given by the norm of the Bethe state|N〉. An
expression for the norm of a Bethe state in terms of a determinant is given by the following
formula which may be obtained by specializing the{ξj } in (17) to{λi}:

〈N |N〉 = 〈↑|
N∏
i=1

C(λi)
N∏
i=1

B(λi)|↑〉

= sinh(η)N




N∏
i,j=1
i =j

sinh(λi − λj + η)

sinh(λi − λj )


detϕ′ (20)

where

ϕ′
ij = −i

(
∂ϕ(λ)

∂λj
+ δij

∂ϕ(λ)

∂λ

)∣∣∣∣
λ=λi

. (21)

The determinant formula for the norm of a Bethe wave function was first conjectured by
Gaudin [18]. Due to the complicated nature of the Bethe wave function a proof was not
available till the development of the quantum inverse scattering method. The first proof of the
determinant formula of the norm of the Bethe wave function for theXXZ spin chain was given
by Korepin [7].
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More work has to be done to obtain an expression for the correlation function (11). Here
we will treat the case when theki are nearest neighbours. Using the solution for the quantum
inverse scattering (12) and the fact that|N〉 is an eigenstate ofT(λ) andR one finds

〈πk+1 . . . πk+n〉 =
n∏

j=1

t−1(µk+j + η/2)
〈N |∏n

j=1 D(µk+j + η/2)|N〉
〈N |N〉 . (22)

Sinced(µk + η/2) = 0, the inverse eigenvaluet−1(µk + η/2) takes the simple form

t−1(µk + η/2) =
N∏
i=1

sinh(λi − µk − η/2)

sinh(λi − µk + η/2)
. (23)

The action of a product of the operatorsD on |N〉 can be calculated and is given by
n∏

j=1

D(λN+j )

N∏
k=1

B(λk)|↑〉

=
N+1∑
i1=1

N+2∑
i2=1
i2 =i1

. . .

N+n∑
in=1

in =i1,...,in−1

Gi1,...,in

(
{λi}N+n

i=1

) N+n∏
k=1

k =i1,...,in

B(λk)|↑〉 (24)

where the functionG is given by

Gi1,...,in

(
{λi}N+n

i=1

)
=

n∏
l=1

d
(
λil
)
c
(
λil − λN+l + η/2

) N+l∏
k=1

k =i1,...,il

b−1(λil − λk + η/2
)
. (25)

We will set λN+j = µk+j + η/2 to calculate then-point correlation function (22). Since
d(µk + η/2) = 0 this means that the sums in (24) only run up toil = N.

From (24) it is seen that we need to calculate the scalar products of the type

S({λi}, {λ1, . . . , λN−n, µk+1, . . . , µk+n}) = 〈N |∏N−n
i=1 B(λi)

∏n
j=1 B(µk+j + η/2)|↑〉

〈N |N〉 .

(26)

Using (17) and (19) one may expressS as a ratio of determinants,

S({λi}, {λ1, . . . , λN−n, µk+1, . . . , µk+n}) =
n∏

i,j=1
i<j

sinh(λN−n+j − λN−n+i )

sinh(µk+j − µk+i )

×
N−n∏
i=1

n∏
j=1

sinh(λi − λN−n+j )

sinh(λi − µk+j − η/2)

×
N∏
i=1

n∏
j=1

sinh(λi − µk+j + η/2)

sinh(λi − λN−n+j + η)

detψ ′({λi}, {µk+j })
detϕ′({λi}) . (27)

The firstN − n rows of theN × N matrixψ ′ are equal to those of the matrixϕ′, but the other
n rows are different:

ψ ′
ij = ϕ′

ij 1 � i � N − n (28)

ψ ′
ij = sinhη

sinh(λj − µk+i − η/2) sinh(λj − µk+i + η/2)
N − n + 1 � i � N. (29)
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Figure 1. The contourC in the complex plane.

Finally, we can rewrite the ratio of the determinants in (27) as one determinant by inverting
ϕ′:

detψ ′

detϕ′ = det(ψ ′ϕ′−1). (30)

To proceed we have to calculate the matrixψ ′ϕ′−1
. The firstN − n rows of this matrix

can be easily calculated using (28)

(ψ ′ϕ′−1)ij = δij 1 � i � N − n. (31)

In section 4 we will calculate the other rows in the limit (M → ∞) for a particular set of
solutions of the Bethe Ansatz equations.

4. Thermodynamic limit

In this section we will describe the thermodynamic limitM → ∞. To be able to take this limit
we need some information on the distribution of the solutions of the Bethe Ansatz equations.
The solutions of (13) fall into two classes depending on the value ofη. These are the so-called
massive regime, where' = coshη > 1 and the massless regime where|'| � 1. In this paper
we will concentrate on the massless case only. Since|'| � 1 we will use the parameterization
γ = iη and furthermore, we will restrict our attention to the intervalπ/2 > γ � 0. We will
consider the class of solutions of (13) for which the imaginary part of eachλj is either 0 or
π/2. These are the so-called 1-strings in the language of [19]. In the limitM → ∞, the
solutions we consider thus belong to a directed contourC (figure 1) which is defined by

C = (−∞,∞) ∪ (∞ + iπ/2,−∞ + iπ/2). (32)

Now we will derive the logarithmic form of the Bethe Ansatz equations in a more precise
manner than was done in (14). For this purpose we define the functionpn by

pn(λ) =
{

2 arctan(tanhλ cotnγ/2) for Imλ = 0
−2 arctan(cothλ tannγ/2) for Imλ = π/2.

(33)

For sinnγ > 0 this function is monotonously increasing (decreasing) on the line Imλ = 0
(Imλ = π/2). The logarithmic version of the Bethe Ansatz equations can then be written as

φ(λi) = 2πni (34)
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where the functionφ is given by

φ(λ) =
M∑
k=1

p1(λ− µk)−
N∑
j=1

p2(λ− λj ). (35)

The numbersni appearing on the right-hand side of (34) are integers forN odd and half integers
for N even. For every (half) integer{ni} there are two solutions of the Bethe Ansatz equations,
corresponding to the two different values of the imaginary part. A solution thus is uniquely
specified by a set of integers and a corresponding set of parities, where the parity of a solution
is defined by

v = 1 − 4

π
Imλ. (36)

Given a set of (half) integers{ni} and a set of parities{vi}, a solutionλj of (34) is called a
particle. A solutionλh = λ̄h + iπ(1 − vh)/4 to the equation

φ(λh) = 2πm m ∈ {ni} or vh ∈ {vi} (37)

is called a hole. In the thermodynamic limit, the particles and holes have finite distribution
densitiesρp andρh, defined by

Mρp(λ)dλ number of particles in [λ, λ + dλ] (38)

Mρh(λ)dλ number holes in [λ, λ + dλ]. (39)

Note that the 1-form dλ has a direction corresponding to that ofC. The densityρtot of the total
possible solutions, or vacancies, is given by

ρtot(λ) = ρp(λ) + ρh(λ). (40)

Since we are dealing with an inhomogeneous model, it will be useful to define the densities
ρ̃tot by

ρtot(λ) = 1

M

M∑
k=1

ρ̃tot(λ− µk). (41)

The corresponding particle and hole densities are given by

ρ̃p(λ− µk) = ϑ(λ)ρ̃ tot(λ− µk) (42)

ρ̃h(λ− µk) = (1 − ϑ(λ))ρ̃ tot(λ− µk) (43)

where the Fermi weightϑ(λ) is given by

ϑ(λ) = ρp(λ)

ρtot(λ)
. (44)

Using these densities we can take the limitM → ∞. It follows that (34) in the thermodynamic
limit can be written as

lim
M→∞

1

M
φ(λ) = π

(
−1 + 2

∫ λ

−∞
ρtot(λ

′) dλ′
)

(45)

where the integration is along the contourC, (figure 1). Differentiating with respect toλ we
find the formula

ρtot(λ) = K tot
1 (λ)−

∫
C
K2(λ− λ′)ρp(λ

′) dλ′. (46)

The functionK tot
1 is defined by

K tot
1 (λ) = lim

M→∞
1

M

M∑
k=1

K1(λ− µk) (47)
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andKn is given by

Kn(λ) = 1

2π
p′
n(λ) = 1

2π

sinnγ

sinh(λ− inγ/2) sinh(λ + inγ/2)
. (48)

The thermodynamic limit ofϕ′ is found using (45) and the fact thatφ(λ) = ϕ(λ) modπ :

ϕ′
ij = −2π i(Mδijρtot(λi) +K2(λi − λj )). (49)

Now we are in a postion to return to the calculation at the end of section 3. Remember
that we want to calculate the lastn rows of the matrixψ ′ϕ′−1. For this purpose we recall from
(29) that

ψ ′
N−n+i,j = −2π iK1(λj − µk+i )

= −2π i

(
ρ̃tot(λj − µk+i ) +

∫
C
K2(λj − λ′)ϑ(λ′)ρ̃tot(λ

′ − µk+i ) dλ′
)

(50)

where in the second line we have used (42) and (46). From (49), however, and the fact thatK2
is symmetric, it follows that this is precisely equal to

ψ ′
N−n+i,j = 1

M

N∑
l=1

ρ̃tot(λl − µk+i )

ρtot(λl)
ϕ′
lj . (51)

We thus conclude that

(ψ ′ϕ′−1)ij = δij 1 � i � N − n (52)

(ψ ′ϕ′−1)N−n+i,j = ρ̃tot(λj − µk+i )

Mρtot(λj )
1 � i � n. (53)

The determinant of this matrix can be written concisely as

det(ψ ′ϕ′−1) = detS̃
1

Mn

n∏
j=1

ρ−1
tot (λN−n+j ) (54)

where then × n matrix S̃ is given by

S̃ij = ρ̃tot(λN−n+j − µk+i ). (55)

Finally, using (22), (24), (27) and (54), the emptiness formation probability can be written
as

〈πk+1 . . . πk+n〉 = 1

Mn
∏

l<m
sinh(µk+l − µk+m)

×
N∑
i1=1

. . .

N∑
in=1

H
({
λil
}
, {µk+l}

) n∏
l=1

ρ−1
tot
(
λil
)

(56)

where the functionH is given by

H
({
λil
}
, {µk+l}

) = detS̃
({
λil
}
, {µk+l}

)
∏

l<m sinh
(
λim − λil − iγ

)
×

n∏
l=1

(
l−1∏
m=1

sinh
(
λil − µk+m − iγ /2

) n∏
m=l+1

sinh
(
λil − µk+m + iγ /2

))
. (57)
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The last step in deriving an expression for the emptiness formation probability in the
thermodynamic limit is to replace the sums in (56) by integrals using the above discussion.
We then arrive at the following multiple integral expression:

〈πk+1 . . . πk+n〉 = 1∏
l<m

sinh(µk+l − µk+m)

∫
C
. . .

∫
C
H({λl}, {µk+l})

n∏
l=1

ϑ(λl) dλl (58)

where the Fermi weightϑ(λ) is defined in (44). We remind the reader that the integration is
along the directed contourC (equation (32), figure 1).

5. Conclusion

In this paper we have obtained a multiple integral expression for the emptiness formation
probability (EPF) on the central horizontal line of the inhomogeneous six-vertex model with
domain wall boundaries. We derived this expression in the thermodynamic limit when the
inhomogeneities are chosen from a particular set of solutions of the Bethe Ansatz equations,
namely those without a bound state but otherwise arbitrary. This result is a first step to
obtaining an expression for the EPF for general solutions of the Bethe Ansatz equations, i.e.
also for bound state solutions. We expect that certain properties of the EPF are independent of
the special choice of inhomogeneities. Ultimately we hope to learn more about such properties
by studying the EPF averaged over Bethe Ansatz solutions.
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[15] Göhmann F and Korepin V 2000J. Phys. A: Math. Gen. 33 1199
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